如图,设椭圆:的离心率,顶点的距离为,为坐标原点.(1)求椭圆的方程;(2)过点作两条互相垂直的射线,与椭圆分别交于两点.(ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由;(ⅱ)求的最小值.
当时,解不等式:.
(本小题满分12分)已知函数,其中 (1)若曲线在点处的切线方程为,求函数的解析式; (2)讨论函数的单调性; (3)若对任意的,不等式在上恒成立,求实数b的取值范围。
(本小题满分12分)已知各项均为正数的数列中,,是数列的前n项和,对任意的,有 (1)求常数的值; (2)求数列的通项公式; (3)记,求数列的前n项和。
(本小题满分12分)在中,分别为角的对边,向量,向量,且向量. (1)求角的大小; (2)设,且的最小正周期为,求在上的最大值和最小值。
(本小题满分12分)已知函数。 (1)当时求的极值; (2)若在上单调递增,求实数a的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号