已知数列的前
项和为
,且
,
;数列
中,
点
在直线
上.
(1)求数列和
的通项公式;
(2)设数列的前
和为
,求
;
某人抛掷一枚质量分布均匀的骰子,出现各数的概率都是,构造数列
,使
,记
.
(Ⅰ)求时的概率;
(Ⅱ)求前两次均为奇数且的概率.
已知数列的首项
,前
项和
恒为正数,且当
时,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:.
已知点满足:
(其中
,又知
.
(Ⅰ)若,求
的表达式;
(Ⅱ)已知点记
,且
对一切
恒成立,试求
的取值范围;
(Ⅲ)设(2)中的数列的前
项和为
,试证:
.
如图,是抛物线
的焦点,
为准线与
轴的交点,直线
经过点
.
(Ⅰ)直线与抛物线有唯一公共点,求
的方程;
|
(Ⅱ)直线与抛物线交于
、
两点记
、
的斜率分别为
,
.
函数.
(Ⅰ)当时,求
的最小值;
(Ⅱ)当时,求
的单调区间.