游客
题文

已知椭圆C=1(ab>0)的离心率为,一条准线lx=2.
(1)求椭圆C的方程;
(2)设O为坐标原点,Ml上的点,F为椭圆C的右焦点,过点FOM的垂线与以OM为直径的圆D交于PQ两点.
①若PQ,求圆D的方程;
②若Ml上的动点,求证点P在定圆上,并求该定圆的方程.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本小题满分13分)

过椭圆内一点M(1,1)的弦AB
(1)若点M恰为弦AB的中点,求直线AB的方程;
(2)求过点M的弦的中点的轨迹方程。

(本小题满分13分)
数列
(I)求数列的通项公式;
(II)若的最大值。

(本小题满分13分)

已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

(本小题满分13分)
已知f(x)=
⑴ 求f(x)的最小正周期和单调增区间;
⑵ 如果三角形ABC中,满足f(A)=,求角A的值.

(本小题14分)已知函数处取得极值。
(Ⅰ)求函数的解析式;
(Ⅱ)求证:对于区间上任意两个自变量的值,都有
(Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号