已知椭圆C:=1(a>b>0)的离心率为
,一条准线l:x=2.
(1)求椭圆C的方程;
(2)设O为坐标原点,M是l上的点,F为椭圆C的右焦点,过点F作OM的垂线与以OM为直径的圆D交于P,Q两点.
①若PQ=,求圆D的方程;
②若M是l上的动点,求证点P在定圆上,并求该定圆的方程.
已知函数,
是
的一个零点,又
在
处有极值,在区间
和
上是单调的,且在这两个区间上的单调性相反.
(I)求的取值范围;
(II)当时,求使
成立的实数
的取值范围.
(本小题12分)
如图所示,已知圆为圆上一动点,点
在
上,点
在
上,且满足
的轨迹为曲线
.
(I)求曲线的方程;
(II)若过定点F(0,2)的直线交曲线于不同的
两点
(点
在点
之间),且满足
,求
的取值范围.
(本小题12分)
下图是一几何体的直观图、主视图、俯视图、左视图.
(Ⅰ)若为
的中点,求证:
面
;
(Ⅱ)证明面
;
(Ⅲ)求面与面
所成的二面角(锐角)的余弦值.
(本小题12分)
一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:
![]() |
1 |
2 |
3 |
4 |
5 |
![]() |
0.4 |
0.2 |
0.2 |
0.1 |
0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(Ⅰ)求购买该商品的3位顾客中,至少有1位采用1期付款的概率;
(Ⅱ)求的分布列及期望
.
(本小题12分)
已知A,B,C为锐角
的三个内角,向量
,
,且
.
(Ⅰ)求的大小;
(Ⅱ)求取最大值时角
的大小.