已知(
且
).
(Ⅰ)求的定义域;
(Ⅱ)求使的
取值范围.
(本小题满分12分) 已知函数在
处有极值.
(Ⅰ)求实数值;
(Ⅱ)求函数的单调区间;
(Ⅲ)试问是否存在实数,使得不等式
对任意
及
恒成立?若存在,求出
的取值范围;若不存在,请说明理由.
(本小题满分12分)已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=
.
(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交轴于点E,若|EM|=
|NE|,求cos∠MSN的值.
(本小题满分12分)
在四棱锥中,
,
,
平面
,
为
的中点,
.
(Ⅰ)求四棱锥的体积
;
(Ⅱ)若为
的中点,求证:平面
平面
;
(Ⅲ)求二面角的大小。.
(本小题满分12分)盒子里装有6件包装完全相同的产品,已知其中有2件次品,其余4件是合格品。为了找到2件次品,只好将盒子里的这些产品包装随机打开检查,直到两件次品被全部检查或推断出来为止。记表示将两件次品被全部检查或推断出来所需检查次数。
(I)求两件次品被全部检查或推断出来所需检查次数恰为4次的概率;
(II)求的分布列和数学期望。