已知.
(1)若存在单调递减区间,求实数
的取值范围;
(2)若,求证:当
时,
恒成立;
(3)设,证明:
.
经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下:
罗非鱼的汞含量(ppm)
![]() |
![]() |
![]() |
![]() |
《中华人民共和国环境保护法》规定食品的汞含量不得超过ppm.
(1)检查人员从这条鱼中,随机抽出
条,求
条中恰有
条汞含量超标的概率;
(2)若从这批数量很大的鱼中任选条鱼,记
表示抽到的汞含量超标的鱼的条数.以此
条鱼的样本数据来估计这批数量很大的鱼的总体数据,求
的分布列及数学期望
.
某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.
(1)求分数在的频率及全班人数;
(2)求分数在之间的频数,并计算频率分布直方图中
间矩形的高;
(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在
之间的概率.
对某电子元件进行寿命追踪调查,所得样本数据的频率分布直方图如下.
(1)求,并根据图中的数据,用分层抽样的方法抽取
个元件,元件寿命落在
之间的应抽取几个?
(2)从(1)中抽出的寿命落在之间的元件中任取
个元件,求事件“恰好有一个元件寿命落在
之间,一个元件寿命落在
之间”的概率.
某种食品是经过、
、
三道工序加工而成的,
、
、
工序的产品合格率分别为
、
、
.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.
(1)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;
(2)设为加工工序中产品合格的次数,求
的分布列和数学期望.
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) |
![]() |
![]() |
![]() |
![]() |
频数(个) |
5 |
10 |
20 |
15 |
(1)根据频数分布表计算苹果的重量在的频率;
(2)用分层抽样的方法从重量在和
的苹果中共抽取4个,其中重量在
的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在和
中各有1个的概率.