已知函数f(x)=cos+2sin2x,x∈R.
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当x∈时,求函数f(x)的最大值和最小值及相应的x值.
(本小题满分12分)某厂家生产甲、乙、丙三种样式的杯子,每种杯子均有和
两种型号,某月的产量(单位:个)如下表所示:
型号 |
甲样式 |
乙样式 |
丙样式 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
按样式用分层抽样的方法在这个月生产的杯子中随机的抽取个,其中有乙样式的杯子
个.
(1)求的值;
(2)用分层抽样的方法在甲样式的杯子中抽取一个容量为的样本,从这个样本中任取
个杯子,求至少有
个
的杯子的概率.
(本小题满分12分)在中,
所对的边分别
,
,
.
(1)求;
(2)若,求
.
(本小题满分14分)在中,
的坐标分别是
,点
是
的重心,
轴上一点
满足
,且
.
(1)求的顶点
的轨迹
的方程;
(2)直线与轨迹
相交于
两点,若在轨迹
上存在点
,使四边形
为平行四边形(其中
为坐标原点),求
的取值范围.
(本小题满分13分)已知函数.
(1)当时,求曲线
在
处的切线方程;
(2)设函数,求函数
的单调区间;
(3)若,在
上存在一点
,使得
成立,求
的取值范围.
(本小题满分12分)如图,在中,已知
在
上,且
又
平面
.
(1)求证:⊥平面
;
(2)求二面角的余弦值.