某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别写出用表示
和用
表示
的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?
袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
列出二项式(-
)15的展开式中:
(1)常数项;(答案用组合数表示)
(2)有理项. (答案用组合数表示)
已知在
处取得极值
(1)求值
(2)求函数的单调递增区间.
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如右表:
性别 是否需要志愿者 |
男 |
女 |
需要 |
40 |
30 |
不需要 |
160 |
270 |
(1)估计该地区老年人中,需要志愿者提供帮助的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由。
附:
![]() |
0.050 |
0.010 |
0.001 |
3.841 |
6.635 |
10.828 |
已知:,求证: