某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别写出用表示
和用
表示
的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?
已知函数.
(1)若函数为偶函数,求
的值;
(2)若,求函数
的单调递增区间;
(3)当时,若对任意的
,不等式
恒成立,求实数
的取值范围.
已知椭圆:
的离心率
,并且经过定点
.
(1)求椭圆的方程;
(2)设为椭圆
的左右顶点,
为直线
上的一动点(点
不在x轴上),连
交椭圆于
点,连
并延长交椭圆于
点,试问是否存在
,使得
成立,若存在,求出
的值;若不存在,说明理由.
如图,已知四棱锥,底面
为菱形,
平面
,
,
分别是
的中点.
(1)证明:;
(2)若,求二面角
的余弦值.
已知等差数列的各项均为正数,
,其前
项和为
,
为等比数列,
,且
.
(1)求与
;
(2)若对任意正整数
和任意
恒成立,求实数
的取值范围.
已知函数.
(1)求该函数图象的对称轴;
(2)在中,角
所对的边分别为
,且满足
,求
的取值范围.