【2015高考上海,理21】已知椭圆
,过原点的两条直线
和
分别于椭圆交于
、
和
、
,记得到的平行四边形
的面积为
.
(1)设
,
,用
、
的坐标表示点
到直线
的距离,并证明
;
(2)设
与
的斜率之积为
,求面积
的值.
如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点.
(1)求证:MN∥平面AA1C1C;
(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB^平面CMN.
已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(
,-2).
(1)求φ的值;
(2)若f(
)=
,-
<α<0,求sin(2α-
)的值.
已知函数
.
(1)当
时,求函数
的单调区间;
(2)当
时,函数
图象上的点都在
,所表示的平面区域内,不等式
恒成立,求实数
的取值范围.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度
(单位:千米
/小时)是车流密度
(单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车
流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明,当
时,
车流速度
是车流密度
的一次函数.
(1)当
时,求函数
的表达式.
(2)当车流密度
为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)
可以达到最大,并求最大值(精确到1辆/每小时).
在△
中,内角
的对边分别为
,已知
(1)求
的值;
(2)
的值.