【2015高考北京,理19】已知椭圆:
的离心率为
,点
和点
都在椭圆
上,直线
交
轴于点
.
(Ⅰ)求椭圆的方程,并求点
的坐标(用
,
表示);
(Ⅱ)设为原点,点
与点
关于
轴对称,直线
交
轴于点
.问:
轴上是否存在点
,使得
?若存在,求点
的坐标;若不存在,说明理由.
(本小题满分12分)已知点列M,M
,…,M
,…,且
与
垂直,其中是不等于零的实常数,是正整数,设
,求数列
的通项公式,并求其前n项和S
。
如图所示,有两条相交成60°角的直路XX′和YY′,交点是O,甲、乙分别在OX、OY上,起初甲离O点3 km,乙离O点1 km,后来两人同时用每小时4 km的速度,甲沿XX′方向,乙沿Y′Y的方向步行.
(1)起初,两人的距离是多少?
(2)用t表示t小时后两人的距离;
(3)什么时候两人的距离最短?
设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:
(1)的值;
(2)的值.
在△ABC中,设A、B、C的对边分别为a、b、c,向量m=(cosA,sinA),n=(-sinA,cosA),若|m+n|=2.
(1)求角A的大小;
(2)若b=4,且c=
a,求△ABC的面积.
已知向量a=(cosx,sinx),|b|=1,且a与b满足|ka+b|=|a-kb| (k>0).
(1)试用k表示a·b,并求a·b的最小值;
(2)若0≤x≤,b=
,求a·b的最大值及相应的x值.