公安部交管局修改后的酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其判断标准是驾驶人员每100毫升血液中的酒精含量X毫克,当20≤X<80时,认定为酒后驾车;当X≥80时,认定为醉酒驾车,重庆市公安局交通管理部门在对G42高速路我市路段的一次随机拦查行动中,依法检测了200辆机动车驾驶员的每100毫升血液中的酒精含量,酒精含量X(单位:毫克)的统计结果如下表:
X |
[0,20) |
[20,40) |
[40,60) |
[60,80) |
[80,100) |
[100,+∞) |
人数 |
t |
1 |
1 |
1 |
1 |
1 |
依据上述材料回答下列问题:
(1)求t的值;
(2)从酒后违法驾车的司机中随机抽取2人,求这2人中含有醉酒驾车司机的概率.
(本小题满分14分)
已知定义在R上的函数和数列
,当
时,
,其中
均为非零常数.
(Ⅰ)若数列是等差数列,求
的值;
(Ⅱ)令,求数列
的通项公式;
(Ⅲ)若数列为等比数列,求函数
的解析式.
(本小题满分13分)
已知椭圆经过点
,离心率为
,动点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;
(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.
(本小题满分13分)
已知函数
(Ⅰ)当在区间
上的最大值和最小值;
(Ⅱ)若在区间上,函数
的图象恒在直线
下方,求
的取值范围.
(本小题满分14分)
在棱长为2的正方体ABCD—A1B1C1D1中,E,F分别为A1D1和CC1的中点.
(Ⅰ)求证:EF//平面ACD1;
(Ⅱ)求异面直线EF与AB所成的角的余弦值;
(Ⅲ)在棱BB1上是否存在一点P,使得二面角P—AC—B的大小为30°?若存在,求出BP的长;若不存在,请说明理由.
(本小题满分13分)
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示。
(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(Ⅱ)在抽出的100名志原者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望。