在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:
规定:当产品中的此种元素含量毫克时为优质品.
(1)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);
(2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数的分布列及数学期望
.
(本小题满分12分)在直三棱柱中,
,
, 异面直线
与
所成的角等于
,设
.
(1)求a的值;
(2)求平面与平面
所成的锐二面角的大小.
(本小题满分12分)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且.
(1)求角C的值;
(2)若,△ABC的面积
,求a的值.
设函数,
(Ⅰ)讨论函数的单调性
(Ⅱ)如果存在,使得
成立,求满足上述条件的最大整数
(Ⅲ)如果对任意的,都有
成立,求实数
的取值范围
已知数列中
,数列
中
,其中
(Ⅰ)求证:数列是等差数列
(Ⅱ)设是数列
的前n项和,求
(Ⅲ)设是数列
的前n 项和,求证:
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2, AD=CD=,PA=
,∠ABC=120°,G为线段PC上的点
(Ⅰ)证明:BD⊥面PAC
(Ⅱ)若G是PC的中点,求DG与APC所成的角的正切值
(Ⅲ)若G满足PC⊥面BGD,求的值.