已知函数在
与
时都取得极值.
(1)求的值及
的极大值与极小值;
(2)若方程有三个互异的实根,求
的取值范围;
(3)若对,不等式
恒成立,求
的取值范围.
盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;
(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为
,随机变量
表示
的最大数,求
的概率分布和数学期望
.
已知 ,证明
在平面直角坐标系 中,已知直线 的参数方程 ( 为参数),直线 与抛物线 相交于 两点,求线段 的长.
如图, 是圆 的直径, 是圆 上位于 异侧的两点,证明
设数列
的前
项和为
.若对任意的正整数
,总存在正整数
,使得
,则称
是"
数列".
(1)若数列
的前
项和为
,证明:
是"
数列".
(2)设
是等差数列,其首项
,公差
,若
是"
数列",求
的值;
(3)证明:对任意的等差数列
,总存在两个"
数列"
和
,使得
成立.