已知函数f(x)=.
(1)求函数f(x)的最小值;
(2)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意m∈R恒成立;q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
(本小题满分12分)甲、乙两所学校的代表队参加汉字听写大赛.在比赛第二阶段,两队各剩最后两名队员上场.甲队两名队员通过第二阶段比赛的概率分别是和
,乙队两名队员通过第二阶段比赛的概率都是
.通过了第二阶段比赛的队员,才能进入第三阶段比赛(若某队两个队员都没有通过第二阶段的比赛,则该队进入第三阶段比赛人数为
).所有参赛队员比赛互不影响,其过程、结果都是彼此独立的.
(Ⅰ)求第三阶段比赛,甲、乙两队人数相等的概率;
(Ⅱ)表示第三阶段比赛甲、乙两队的人数差的绝对值,求
的分布列和数学期望.
(本小题满分12分)某军区新兵步枪射击个人平均成绩
(单位:环)服从正态分布
,从这些个人平均成绩中随机抽取
个,得到如下频数分布表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求和
的值(用样本数学期望、方差代替总体数学期望、方差);
(Ⅱ)如果这个军区有新兵名,试估计这个军区新兵
步枪射击个人平均成绩在区间
上的人数
[参考数据:,若
,则
,
,
].
(本小题满分12分)下表是随机抽取的某市五个地段五种不同户型新电梯房面积(单位:十平方米)和相应的房价
(单位:万元)统计表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)在给定的坐标系中画出散点图;
(Ⅱ)求用最小二乘法得到的回归直线方程(参考公式和数据:,
,
);
(Ⅲ)请估计该市一面积为的新电梯房的房价.
(本题12分)已知在区间[0,1]上是增函数,在区间
上是减函数,又
(Ⅰ)求的解析式;
(Ⅱ)若在区间(m>0)上恒有
≤x成立,求m的取值范围.
(本小题满分12分)已知方程
(1)若此方程表示的曲线是圆C,求m的取值范围;
(2)若(1)中的圆C与直线相交于P,Q两点,且
(O为原点),求圆C的方程.