已知点集L={(x,y)|y=m·n},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*.
(1)求数列{an},{bn}的通项公式;
(2)求·OPn+1的最小值;
(3)设cn= (n≥2),求c2+c3+c4+…+cn的值.
已知函数f(x)=x2,将区间[0,1]十等分,画出求各等分点及端点函数值的算法的框图,并写出程序.
意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子? 试画出解决此问题的程序框图,并编写相应的程序.
有一列数1,2,5,26,…,你能找出它的规律吗?下面的程序框图所示是输出这个数列的前10项,并求和的算法,试将框图补充完整,并写出相应的程序.
将某科成绩分为3个等级:85—100为“A”;60—84为“B”;60以下为“C”.试用条件分支结构的框图表示某个学生成绩等级的算法.
已知一个三角形的三边边长分别为3,4,5, 设计一个算法,求出它的面积.