某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数如下表:
|
1号 |
2号 |
3号 |
4号 |
5号 |
甲组 |
4 |
5 |
x |
9 |
10 |
乙组 |
5 |
6 |
7 |
y |
9 |
(1)已知两组技工在单位时间内加工的合格零件平均数为7,分别求出甲、乙两组技工在单位时间内加工的合格零件的方差,并由此分析两组技工的加工水平;
(2)质检部门从该车间甲、乙两组中各随机抽取一名技工,对其加工的零件进行检测,若2人加工的合格零件个数之和超过14,则称该车间“质量合格”,求该车间“质量合格”的概率.
已知顶点在原点,焦点在
轴上的抛物线过点
.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于
、
两点,求证:
.
已知命题:任意
,
,命题
:函数
在
上单调递减.
(1)若命题为真命题,求实数
的取值范围;
(2)若和
均为真命题,求实数
的取值范围.
已知抛物线与椭圆
有公共焦点
,且椭圆过点
.
(1)求椭圆方程;
(2)点、
是椭圆的上下顶点,点
为右顶点,记过点
、
、
的圆为⊙
,过点
作⊙
的切线
,求直线
的方程;
(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点、
,试问直线
是否经过定点,若是,求出定点坐标;若不是,说明理由.
在长方体中,
为线段
中点.
(1)求直线与直线
所成的角的余弦值;
(2)若,求二面角
的大小;
(3)在棱上是否存在一点
,使得
平面
?若存在,求
的长;若不存在,说明理由.
某工厂拟建一座平面图为矩形,面积为的三段式污水处理池,池高为1
,如果池的四周墙壁的建造费单价为
元
,池中的每道隔墙厚度不计,面积只计一面,隔墙的建造费单价为
元
,池底的建造费单价为
元
,则水池的长、宽分别为多少米时,污水池的造价最低?最低造价为多少元?