甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
频数 |
3 |
4 |
8 |
15 |
|
|
|
|
|
分组 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
15 |
x |
3 |
2 |
乙校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
频数 |
1 |
2 |
8 |
9 |
|
|
|
|
|
分组 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
10 |
10 |
y |
3 |
(1)计算x,y的值;
(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;
(3)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.10的前提下认为两所学校的数学成绩有差异.
|
甲校 |
乙校 |
总计 |
优秀 |
|
|
|
非优秀 |
|
|
|
总计 |
|
|
|
参考数据与公式:由列联表中数据计算K2=.
临界值表
P(K2≥k0) |
0.10 |
0.05 |
0.010 |
k0 |
2.706 |
3.841 |
6.635 |
(本小题满分12分)
已知奇函数在
上有意义,且在(
)上是增函数,
,又有函数
,若集合
,集合
(1)求
的解集;
(2)求中m的取值范围
(本小题满分12分)
已知各项都不相等的等差数列的前六项和为60,且
的等比中项.
(I)求数列的通项公式
;
(II)若数列的前n项和Tn.
(本小题满分12分)已知函数
(I)求函数的最小值和最小正周期;
(II)设△的内角
对
边分别为
,且
,若
与
共线,求
的值.
(本小题满分12分)
已知,
且
是
的充分条件,求
取值范围.
(本大题满分14分)
设函数上两点
,若
,且P点的横坐标为
.
(1)求P点的纵坐标;
(2)若求
;
(3)记为数列
的前n项和,若
对一切
都成立,试求a的取值范围.