已知的三个顶点都在抛物线
上,且抛物线的焦点
满足
,若
边上的中线所在直线
的方程为
(
为常数且
).
(1)求的值;
(2)为抛物线的顶点,
,
,
的面积分别记为
,
,
,求证:
为定值.
已知等比数列满足:
,公比
,数列
的前
项和为
,且
.
(1)求数列和数列
的通项
和
;
(2)设,证明:
.
下表是某市从3月份中随机抽取的天空气质量指数(
)和“
”(直径小于等于
微米的颗粒物)
小时平均浓度的数据,空气质量指数(
)小于
表示空气质量优良.
日期编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
空气质量指数(![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
“![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)根据上表数据,估计该市当月某日空气质量优良的概率;
(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘
’的
小时平均浓度不超过
”,求事件
发生的概率;
(3)在上表数据中,在表示空气质量优良的日期中,随机抽取天,记
为“
”
小时平均浓度不超过
的天数,求
的分布列和数学期望.
在中,已知
,
且
.
(1)求角和
的值;
(2)若的边
,求边
的长.
已知函数(
).
(1)若,求函数
的极值;
(2)设.
① 当时,对任意
,都有
成立,求
的最大值;
② 设的导函数.若存在
,使
成立,求
的取值范围.
已知焦点在y轴,顶点在原点的抛物线C1经过点P(2,2),以C1上一点C2为圆心的圆过定点A(0,1),记为圆
与
轴的两个交点.
(1)求抛物线的方程;
(2)当圆心在抛物线上运动时,试判断
是否为一定值?请证明你的结论;
(3)当圆心在抛物线上运动时,记
,
,求
的最大值.