游客
题文

如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E为CD上一点,且CE=3DE.

(1)求证:AE⊥平面SBD.
(2)M,N分别为线段SB,CD上的点,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,确定M,N的位置;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量基本定理及坐标表示
登录免费查看答案和解析
相关试题

如图,在三棱台 ABC DEF 中,已知平面 BCFE 平面 ABC ACB = 90 ° BE = EF = FC = 1 BC = 2 AC = 3

image.png

(1)求证: EF 平面 ACFD

(2)求二面角 B AD F 的余弦值.

ABC 中,内角A,B,C所对的边分别为a,b,c,已知 b + c = 2 acosB

(1)证明: A = 2 B

(2)若 ABC 的面积 S = a 2 4 ,求角A的大小.

{ a n } { b n } 是两个等差数列,记 c n = max { b 1 a 1 n b 2 a 2 n b n a n n } n = 1 2 3 ,其中 max { x 1 x 2 x s } 表示 x 1 x 2 , …, x s 这s个数中最大的数.

(1)若 a n = n b n = 2 n 1 ,求 c 1 c 2 c 3 的值,并证明{cn}是等差数列;

(2)证明:或者对任意正数 M ,存在正整数 m ,当 n m 时, c n n M ;或者存在正整数 m ,使得 c m c m + 1 c m + 2 , …是等差数列.

已知函数 f x = e x cosx x

(1)求曲线 y = f x 在点 0 f 0 处的切线方程;

(2)求函数 f x 在区间 [ 0 π 2 ] 上的最大值和最小值.

已知抛物线 C y 2 = 2 px 过点 P 1 1 .过点 0 1 2 作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.

(1)求抛物线C的方程,并求其焦点坐标和准线方程;

(2)求证:A为线段BM的中点.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号