如图,椭圆C:+
=1的焦点在x轴上,左右顶点分别为A1,A,上顶点为B,抛物线C1,C2分别以A,B为焦点,其顶点均为坐标原点O,C1与C2相交于直线y=
x上一点P.
(1)求椭圆C及抛物线C1,C2的方程.
(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M,N,已知点Q(-,0),求
·
的最小值.
如图,已知在四棱锥中,底面
是矩形,
平面
,
,
,
是
的中点,
是线段
上的点.
(1)当是
的中点时,求证:
平面
;
(2)要使二面角的大小为
,试确定
点的位置.
已知数列是公差不为0的等差数列,
,且
,
,
成等比数列.
(1)求数列{an}的通项公式;
(2)设,求数列
的前
项和
。
设向量,
,
(1)若,求
的值;
(2)设函数,求
的最大值。
观察以下各等式:,
分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明。
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:,
,
,
,
分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成的列联表,并判断是否有
的把握认为“生产能手与工人所在的年龄组有关”?
附表: