根据如图所示的程序框图,将输出的x,y值依次分别记为x1,x2,…,xn,…,x2008;y1,y2,…,yn,…,y2008.
(1)求数列{xn}的通项公式.
(2)写出y1,y2,y3,y4,由此猜想出数列{yn}的一个通项公式yn,并证明你的结论.
(3)求zn=x1y1+x2y2+…+xnyn(n∈N*,n≤2008).
(本小题满分12分) 已知等差数列的前n项和为
,且
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列
的前n项和
.
(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE
,G是BC的中点.沿EF将梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如图).
(1)当时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求
的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.
(本小题满分12分)如图所示,正方形和矩形
所在平面相互垂直,
是
的中点.
(1)求证:;
(2)若直线与平面
成45o角,求异面直线
与
所成角的余弦值.
(本小题满分12分)如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°.
(1)证明:∠PBC=90°;
(2)若PB=3,求直线AB与平面PBC所成角的正弦值.
(本小题满分12分)如图:在三棱锥中,已知点
、
、
分别为棱
、
、
的中点.
(1)求证:∥平面
;
(2)若,
,求证:平面
⊥平面
.