2×2矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(1)求矩阵M.
(2)设直线l在矩阵M对应的变换作用下得到了直线m:x-y=4.求直线l的方程.
动圆M过定点A(-,0),且与定圆A´:(x-
)2+y2=12相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求的取值范围.
已知圆,直线
.
(Ⅰ)若与
相切,求
的值;
(Ⅱ)是否存在值,使得
与
相交于
两点,且
(其中
为坐标原点),若存在,求出
,若不存在,请说明理由.
数列的前
项和记为
(Ⅰ)求的通项公式;
(Ⅱ)等差数列的各项为正,其前
项和为
,且
,又
成等比数列,求
已知等差数列满足:
,
,
的前n项和为
.
(Ⅰ)求及
;
(Ⅱ)令bn=(n
N*),求数列
的前n项和
.
(本小题满分10分)选修4-5:不等式选修
在,
的前提下,求a的一个值,是它成为
的一个充分但不必要条件。