某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:
|
A |
B |
C |
D |
E |
身高 |
1.69 |
1.73 |
1.75 |
1.79 |
1.82 |
体重指标 |
19.2 |
25.1 |
18.5 |
23.3 |
20.9 |
(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;
(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
(本小题满分14分)设函数
,其中
(Ⅰ)当判断
在
上的单调性.
(Ⅱ)讨论的极值点.
(本小题满分14分)在平面直角坐标系中,设点
,直线
:
,点
在直线
上移动,
是线段
与
轴的交点,
.
(I)求动点的轨迹的方程
;
(II)设圆过
,且圆心
在曲
线
上, 设圆
过
,且圆心
在曲线
上,
是圆
在
轴上截得的弦,当
运动时弦长
是否为定值?请说明理由.
(本小题满分14分)如图,为等边三角形,
为矩形,平面
平面
,
,
分别为
、
、
中点,
与底面
成
角.
(Ⅰ)求证:
(Ⅱ)求二面角的正切.
(本小题满分12分)一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数![]() |
10 |
15 |
20 |
25 |
30 |
35 |
40 |
件数![]() |
4 |
7 |
12 |
15 |
20 |
23 |
27 |
其中.
(Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(Ⅱ)求回归直线方程;(结果保留到小数点后两位)
(参考数据:,
,
,
,
,
)
(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)
(本小题满分12分)已知:,其中
,
,
,
.
(Ⅰ)求的对称轴和对称中心;
(Ⅱ)求的单增区间.