如图所示,在正△ABC中,点D,E分别在边AC,AB上,且AD=AC,AE=
AB,BD,CE相交于点F.
(1)求证:A,E,F,D四点共圆;
(2)若正△ABC的边长为2,求A,E,F,D所在圆的半径.
在中,已知
,
且
.
(1)求角和
的值;
(2)若的边
,求边
的长.
已知函数,
(
为常数).
(1)函数的图象在点
处的切线与函数
的图象相切,求实数
的值;
(2)若,
,
、
使得
成立,求满足上述条件的最大整数
;
(3)当时,若对于区间
内的任意两个不相等的实数
、
,都有
成立,求
的取值范围.
已知抛物线的方程为,直线
的方程为
,点
关于直线
的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,点
是抛物线的焦点,
是抛物线上的动点,求
的最小值及此时点
的坐标;
(3)设点、
是抛物线上的动点,点
是抛物线与
轴正半轴交点,
是以
为直角顶点的直角三角形.试探究直线
是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
如图,已知三棱柱的侧棱与底面垂直,且
,
,
,
,点
、
、
分别为
、
、
的中点.
(1)求证:平面
;
(2)求证:;
(3)求二面角的余弦值.
已知等比数列满足:
,公比
,数列
的前
项和为
,且
.
(1)求数列和数列
的通项
和
;
(2)设,证明:
.