在△ABC中,内角A,B,C的对边分别为a,b,c,且a2=b2+c2+bc.
(1)求A;
(2)设a=,S为△ABC的面积,求S+3cos Bcos C的最大值,并指出此时B的值.
(本小题满分12分)边长为2的正方形ABCD中,
(1)如果E、F分别为AB、BC中点, 分别将△AED、△DCF、△BEF沿ED、DF、FE折起, 使A、B、C重合于点P.证明: 在折叠过程中, A点始终在某个圆上, 并指出圆心和半径.
(2)如果F为BC的中点, E是线段AB上的动点, 沿DE、DF将△AED、△DCF折起,使A、
C重合于点P, 求三棱锥P-DEF体积的最大值.
(本小题满分12分)如图, 已知圆:
, 直线
的方程为
, 点
是直线
上一动点, 过点
作圆的切线
、
, 切点为
、
.
(1)当的横坐标为
时, 求∠
的大小;
(2)求证: 经过A、P、M三点的圆必过定点, 并求出所有定点的坐标.
(本小题满分12分)标号为0到9的10瓶矿泉水.
(1)从中取4瓶, 恰有2瓶上的数字相邻的取法有多少种?
(2)把10个空矿泉水瓶挂成如下4列的形式, 作为射击的靶子, 规定每次只能射击每列最下面的一个(射中后这个空瓶会掉到地下), 把10个矿泉水瓶全部击中有几种不同的射击方案?
(3)把击中后的矿泉水瓶分送给A、B、C三名垃圾回收人员, 每个瓶子1角钱.垃圾回收人员卖掉瓶子后有几种不同的收入结果?
(本小题满分12分)下图是调查某地某公司1000名员工的月收入后制作的直方图.
(1)求该公司员工的月平均收入及员工月收入的中位数;
(2)在收入为1000至1500元和收入为3500至4000元的员工中用分层抽样的方法抽取一个容量15的样本, 员工甲、乙的月收入分别为1200元、3800元, 求甲乙同时被抽到的概率.
函数对于任意的实数
都有
成立,且当
时
恒成立.
(1)证明函数的奇偶性;
(2)若,求函数
在
上的最大值;
(3)解关于的不等式