某商场销售某种商品的经验表明,该商品每日的销售量y(单
位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
①求a的值;
②若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
已知数列中,
,
,
(Ⅰ)证明数列是等比数
列,并求出数列
的通项公式
(Ⅱ)记,数列
的前
项和为
,求使
的
的最小值
运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元
(Ⅰ)求这次行车总费用y关于x的表达式
(Ⅱ)当x为何值时,这次行车的总费用最低,并求出最低费用的值
已知点(1,2)是函数的图象上一点,数列
的前
项和
.
(Ⅰ)求数列的通项公式
(Ⅱ)若,求数列
的前
项和
.
如图,海中小岛A周围40海里内有暗礁,一船正在向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?
在△ABC中,角A、B、C的对边分别为a、b、c,且
(Ⅰ)求角A的大小;
(Ⅱ)若,求△ABC的面积.