如图,在棱长为a的正方体ABCD—A1B1C1D1中,M为A1D中点,N为AC中点.
(1)求异面直线MN和AB所成的角;
(2)求证:MN⊥AB1;
已知直线与直线
平行,且与坐标轴围成的三角形面积为5,求直线
的方程.
(本小题满分12分)已知向量=(sin(
+x),
cosx),
=(sinx,cosx), f(x)=
·
.
⑴求f(x)的最小正周期和单调增区间;
⑵如果三角形ABC中,满足f(A)=,求角A的值.
(本小题满分13分)对于在区间[m,n]上有意义的两个函数与
,如果对任意
[m,n]均有
,称
与
在[m,n]上是接近的,否则称
与
在[m,n]上是非接近的,现有两个函数
与
(a>0,a≠1),给定区间[a+2,a+3].(1)若
与
在给定区间[a+2,a+3]上都有意义,求a的取值范围;(2)讨论
与
在[a+2,a+3]上是否是接近的.
(本小题满分13分)如图,,
分别是椭圆
(a>b>0)的左右焦点,M为椭圆上一点,
垂直于x轴,且OM与椭圆长轴和短轴端点的连线AB平行。
(1)求椭圆的离心率;
(2)若G为椭圆上不同于长轴端点任一点,求∠取值范围;
(3)过且与OM垂直的直线交椭圆于P、Q.
求椭圆的方程
(本小题满分13分)设数列的前
项和为
,且
;数列
为等差数列,且
,
.(1)求数列
和
的通项公式;
(2)若,
为数列
的前
项和.求证:
.