先阅读下列不等式的证法,再解决后面的问题:
已知a1,a2∈R,a1+a2=1,求证:+
≥
.
证明:构造函数f(x)=(x-a1)2+(x-a2)2,f(x)对一切实数x∈R,恒有f(x)≥0,则Δ=4-8(+
)≤0,∴
+
≥
.
(1)已知a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
对于集合M,定义函数对于两个集合M,N,定义集合
. 已知A={2,4,6,8,10},B={1,2,4,8,16}.
(Ⅰ)写出和
的值,并用列举法写出集合
;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数.
(ⅰ)求证:当取得最小值时,2∈M;
(ⅱ)求的最小值.
已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.
已知f (x)是R上的偶函数,且在(0,+ )上单调递增,并且f (x)<0对一切
成立,试判断
在(-
,0)上的单调性,并证明你的结论.
证明:函数f(x)=在(-2,+¥)上是增函数.
已知A=,B=
.
(Ⅰ)若,求
的取值范围;
(Ⅱ)若,求
的取值范围.