已知二次函数f(x)=ax2+bx(a、b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,说明理由.
已知等比数列为正项递增数列,且
,
,数列
.
(1)求数列的通项公式;
(2),求
.
已知曲线的参数方程是
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)写出的极坐标方程和
的直角坐标方程;
(2)已知点、
的极坐标分别是
、
,直线
与曲线
相交于
、
两点,射线
与曲线
相交于点
,射线
与曲线
相交于点
,求
的值.
如图:是⊙
的直径,
是弧
的中点,
⊥
,垂足为
,
交
于点
.
(1)求证:=
;
(2)若=4,⊙
的半径为6,求
的长.
已知椭圆(a>b>0)的离心率为
,且过点(
).
(1)求椭圆E的方程;
(2)设直线l:y=kx+t与圆(1<R<2)相切于点A,且l与椭圆E只有一个公共点B.
①求证:;
②当R为何值时,取得最大值?并求出最大值.
平行四边形中,
,
,且
,以BD为折线,把△ABD折起,
,连接AC.
(1)求证:;
(2)求二面角B-AC-D的大小.