已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.
(1)求f(x)与g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围.
已知椭圆的焦点,过
作垂直于
轴的直线被椭圆所截线段长为
,过
作直线l与椭圆交于A、B两点.
(1)求椭圆的标准方程;
(2)若A是椭圆与y轴负半轴的交点,求的面积;
(3)是否存在实数使
,若存在,求
的值和直线
的方程;若不存在,说明理由.
已知函数.
(1)当时,求满足
的
的取值范围;
(2)若的定义域为R,又是奇函数,求
的解析式,判断其在R上的单调性并加以证明.
本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,已知正方体的棱长为2,
分别是
的中点.
(1)求三棱锥的体积;
(2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).
已知函数的定义域为
,求函数
的值域和零点.
(本题共3小题,满分18分。第1小题满分4分,第2小题满分7分,第3小题7分)
对定义在上,并且同时满足以下两个条件的函数
称为
函数.
① 对任意的,总有
;
② 当时,总有
成立.
已知函数与
是定义在
上的函数.
(1)试问函数是否为
函数?并说明理由;
(2)若函数是
函数,求实数
的值;
(3)在(2)的条件下,是否存在实数,使方程
恰有两解?若存在,求出实数
的取值范围;若不存在,请说明理由.