游客
题文

在平面直角坐标系xOy中,设曲线C1所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.Ml上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若Ml与椭圆C2的交点,求△AMB的面积的最小值.

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

(本题满分14分)
如图1,在平面内,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).

(Ⅰ) 设二面角E – AC – D1的大小为q,若£q£,求线段BE长的取值范围;
(Ⅱ)在线段上存在点,使平面平面,求与BE之间满足的关系式,并证明:当0 < BE < a时,恒有< 1.

(本题满分14分)
已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列的通项公式;
(Ⅲ) 设如果对任意正整数,不等式恒成立,求实数的取值范围.

(本题满分14分)
已知函数图象的两相邻对称轴间的距离为.
(Ⅰ)求的值;
(Ⅱ)在中,分别是角的对边,若的最大值.

((本小题满分10分)选修4—5:不等式选讲
设函数
(I)解不等式
(II)求函数的最小值.

((本小题满分10分)选修4—1:几何证明选讲
如图,已知AD是的外角的平分线,交BC的延长线于点D,延长DA交的外接圆于点F,连结FB、FC

(I)求证:FB=FC;
(II)求证:FB2=FA·FD;
(III)若AB是外接圆的直径,求AD的长。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号