设,,其中是常数,且.(1)求函数的极值;(2)证明:对任意正数,存在正数,使不等式成立;(3)设,且,证明:对任意正数都有:.
数列的前项和为,点在直线. ⑴求数列的通项公式; ⑵ 数列中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
已知函数图像的相邻两条对称轴之间的距离等于。 (1)求的表达式;(要写出推导过程) (2)若是直角三角形的内角,求的值域。
设数列的前项n和为,若对于任意的正整数n都有. (1)设,求证:数列是等比数列,并求出的通项公式。 (2)。求数列的前n项和.
在△ABC中,,求
已知数列的前项和。(1)求数列的通项公式 ;(2)求的最大或最小值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号