已知函数的图象与
的图象关于直线
对称。
(Ⅰ)若直线与
的图像相切, 求实数
的值;
(Ⅱ)判断曲线与曲线
公共点的个数.
(Ⅲ)设,比较
与
的大小, 并说明理由.
某观测站C在城A的南20˚西的方向上,由A城出发有一条公路,走向是南40˚东,在C处测得距C为31千米的公路上B处有一人正沿公路向A城走去,走了20千米后,到达D处,此时C、D间距离为21千米,问这人还需走多少千米到达A城?
某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.
(1)写出第一次服药后y与t之间的函数关系式;
(2)据进一步测定:每毫升血液中含药量不少于0.25
微克时,治疗有效.
①求服药一次后治疗有效的时间是多长?
②当时,第二次服药,问
时药效能否持续?
某校有教职员工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室.据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?
已知椭圆的离心率为
,右焦点
也是抛物线
的焦点。
(1)求椭圆方程;
(2)若直线与
相交于
、
两点。
①若,求直线
的方程;
②若动点满足
,问动点
的轨迹能否与椭圆
存在公共点?若存在,求出点
的坐标;若不存在,说明理由。
已知函数(
).
(1)当时,求函数
在
上的最大值和最小值;
(2)当函数在
单调时,求
的取值范围;
(3)求函数既有极大值又有极小值的充要条件。