某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1kg、B原料2kg;生产乙产品1桶需耗A原料2kg,B原料1kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?
已知函数的图象过的定点在函数的图象上,其中m、n为正数,求的最小值。
若数列中,点在函数的图像上, (1)求数列的通项公式; (2)求数列的前n项和.
已知函数在区间上有最大值3,最小值,试求和的值
已知定义在上的奇函数, 当时,. (1)求函数在上的解析式; (2)试用函数单调性定义证明:在上是减函数; (3)要使方程,在上恒有实数解,求实数的取值范围.
已知函数 (1)函数的图象可由的图象经过怎 样的平移和伸缩变换得到; (2)设,是否存在实数,使得函数 在R上的最小值是?若存在,求出对应的值;若不存在,说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号