某公司计划2013年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
若函数在区间
上有且只有一个极值点,则
的取值范围为()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知函数(
为常数)在点
的切线与直线
平行.
(1)求的值与函数
的单调区间;
(2)证明:当时,
(3)证明:对任意给定的正数,总存在
,使得当
,恒有
.
已知椭圆长轴的一个端点为圆
的圆心,且点
为椭圆
上一点.
(1)求椭圆的方程与离心率;
(2)设圆与椭圆
交于
,点
为椭圆
上异于
的任意一点,且直线
分别与
轴相交于点
,证明:
为定值(点
为坐标原点).
数列的首项
且满足
.
(1)证明数列是等差数列;
(2)求数列的前
项和
.
如图所示,在三棱柱中,
底面
,点
在平面
中的投影为线段
上的点
.
(1)求证:⊥
(2)点为
上一点,若
,
,求二面角
的平面角的余弦值