(1)等比数列中,对任意
,
时都有
成等差,求公比
的值
(2)设是等比数列
的前
项和,当
成等差时,是否有
一定也成等差数列?说明理由
(3)设等比数列的公比为
,前
项和为
,是否存在正整数
,使
成等差且
也成等差,若存在,求出
与
满足的关系;若不存在,请说明理由
(本小题满分12分)
已知是奇函数,且在定义域(—1,1)内可导并满足
解关于m的不等式
(本小题满分12分)
已知合集的定义域为M,
,若
(本小题满分13分)
已知函数为自然对数的底数)
(1)求的单调区间,若
有最值,请求出最值;
(2)是否存在正常数,使
的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出
的值,以及公共点坐标和公切线方程;若不存在,请说明理由。
(本小题满分13分)
已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;
是过点P(0,2)且互相垂直的两条直线,
交E于A,B两点,
交E交C,D两点,AB,CD的中点分别为M,N。
(1)求椭圆E的方程;
(2)求k的取值范围;
(3)求的取值范围。
(本小题满分13分)
在数列。
(1)求证:数列是等差数列,并求数列
的通项公式
;
(2)设,求数列
的前
项和。