(本小题满分13分)
在数列。
(1)求证:数列是等差数列,并求数列
的通项公式
;
(2)设,求数列
的前
项和。
(本小题满分12分)在中,内角
的对边分别为
已知
,
.
(1)求的面积;
(2)求
(本小题满分14分)已知函数(
).
(1)若,求曲线
在点
处的切线方程;
(2)若不等式对任意
恒成立.
①求实数的取值范围;
②试比较与
的大小,并给出证明(
为自然对数的底数,
).
(本小题满分12分)已知点,动点
满足直线
与直线
的斜率之积为
.
(1)求动点的轨迹
的方程;
(2)设过点的直线
与曲线
交于点
,记点
到直线
的距离为
.
①求的值;
②过点作直线
的垂线交直线
于点
,求证:直线
平分线段
.
(本小题满分12分)如图四棱锥中,平面
平面
,
,
,且
,
.
(1)求三棱锥的体积;
(2)问:棱上是否存在点
,使得
平面
?若存在,求出
的值,并加以证明;若不存在,请说明理由.
(本小题满分12分)已知函数在一个周期内的图象如图所示,其中
,
.
(1)求函数的解析式;
(2)在中,角
的对边分别是
,且
,求
的面积.