已知数列{an}的前n项和为Sn=3n-1.
(1)求数列{an}的通项公式;
(2)若bn= (Sn+1),求数列{bnan}的前n项和Tn.
如图,在三棱柱中,侧棱垂直于底面,
,
,
、
分别为
、
的中点.
(1)求证:平面平面
;
(2)求证:平面
;
(3)求三棱锥的体积.
某体育兴趣小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:
A |
B |
C |
D |
E |
|
身高 |
1.69 |
1.73 |
1.75 |
1.79 |
1.82 |
体重 |
19.2 |
25.1 |
18.5 |
23.3 |
20.9 |
(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;
(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
已知函数的图象过点
且点
)在函数
的图象上.
(1)求数列{}的通项公式;
(2)令若数列{
}的前n项和为
求证:
.
在△ABC中,内角A、B、C对边的边长分别是a、b、c.已知c=2,.
(1)若△ABC的面积等于求a与b的值;
(2)若sinB=2sinA,求△ABC的面积.
为方便游客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?