招聘会上,某公司决定先试用后再聘用小强,该公司的甲、乙两个部门各有4个不同岗位.
(Ⅰ)公司随机安排小强在这两个部门中的3个岗位上进行试用,求小强试用的3个岗位中恰有2个在甲部门的概率;
(Ⅱ)经试用,甲、乙两个部门都愿意聘用他.据估计,小强可能获得的岗位月工资及相应概率如下表所示:
甲部门不同岗位月工资![]() |
2200 |
2400 |
2600 |
2800 |
获得相应岗位的概率![]() |
0.4 |
0.3 |
0.2 |
0.1 |
乙部门不同岗位月工资![]() |
2000 |
2400 |
2800 |
3200 |
获得相应岗位的概率![]() |
0.4 |
0.3 |
0.2 |
0.1 |
求甲、乙两部门月岗位工资的期望与方差,据此请帮助小强选择一个部门,并说明理由.
已知椭圆的中点在原点且过点,焦点在坐标轴上,长轴长是短轴长的3倍,求该椭圆的方程.
设,
.
(1)若恒成立,求实数
的取值范围;
(2)若时,
恒成立,求实数
的取值范围;
(3)当时,解不等式
.
已知集合M={1,2,3,4,5},.
(1)用列举法表示集合;
(2)设N是M的非空真子集,且时,有
,试写出所有集合N;
(3)已知M的非空子集个数为31个,依次记为,分别求出它们各自的元素之和,结果依次记为
,试计算:
的值.
已知.
(1)已知,分别求
的值;
(2)画出函数的图像,并指出函数的单调区间(不要求证明);
(3)解不等式
将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗. 假定A,B两组同时开始植树.
(1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙棘用时
小时,应如何分配A,B两组的人数,使植树活动持续的时间最短?
(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨仍用时小时,而每名志愿者种植一捆沙棘实际用时
小时,于是,从A组抽调6名志愿者加入B组继续种植,求植树活动持续的时间.