某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为
,
,
,
,
.
(1)求直方图中的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
已知中心在原点的椭圆C的一个焦点为F(4,0),长轴端点到较近焦点的距离为1,A(x1,y1),B(x2,y2)(x1≠x2)为椭圆上不同的两点.
(1)求椭圆C的方程.
(2)若x1+x2=8,在x轴上是否存在一点D,使||=|
|?若存在,求出D点的坐标;若不存在,说明理由.
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(1)求动点P的轨迹C的方程.
(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求·
的最小值.
已知椭圆C:+
=1(a>b>0)的一个顶点A(2,0),离心率为
,直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程.
(2)当△AMN的面积为时,求k的值.
已知线段AB的两个端点A,B分别在x轴、y轴上滑动,|AB|=3,点M满足2=
.
(1)求动点M的轨迹E的方程.
(2)若曲线E的所有弦都不能被直线l:y=k(x-1)垂直平分,求实数k的取值范围.
已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.
(1)求圆C的圆心轨迹L的方程.
(2)求满足条件m=n的点M的轨迹Q的方程.
(3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.