某观赏鱼池塘中养殖大量的红鲫鱼与金鱼,为了估计池中两种鱼数量情况,养殖人员从池中捕出红鲫鱼和金鱼各1000条,并给每条鱼作上不影响其存活的记号,然后放回池内,经过一段时间后,再从池中随机捕出1000条鱼,分别记录下其中有记号的鱼数目,再放回池中,这样的记录作了10次,将记录数据制成如图所示的茎叶图.
(1)根据茎叶图分别计算有记号的两种鱼的平均数,并估计池塘中两种鱼的数量.
(2)随机从池塘中逐条有放回地捕出3条鱼,求恰好是1条金鱼2条红鲫鱼的概率.
已知函数 .
(1)讨论 的单调性;
(2)证明:当 时, .
如图,在正四棱柱 中, , .点 , , , 分别在棱 , , , 上, , , .
(1)证明: ;
(2)点 在棱 上,当二面角 为 时,求 .
已知在 中, , .
(1)求 ;
(2)设 ,求 边上的高.
[选修4-5:不等式选讲]
已知 .
(1)求不等式 的解集;
(2)在直角坐标系 中,求不等式组 所确定的平面区域的面积.
[选修4-4:坐标系与参数方程]
在直角坐标系 中,以坐标原点 为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,曲线 ( 为参数, ).
(1)写出 的直角坐标方程;
(2)若直线 既与 没有公共点,也与 没有公共点、求 的取值范围.