已知椭圆C:+
=1(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
已知函数是定义域为
的偶函数.当
时,
若关于
的方程
有且只有7个不同实数根,则
的值是.
(理)已知点是平面直角坐标系上的一个动点,点
到直线
的距离等于点
到点
的距离的2倍.记动点
的轨迹为曲线
.
(1)求曲线的方程;
(2)斜率为的直线
与曲线
交于
两个不同点,若直线
不过点
,设直线
的斜率分别为
,求
的数值;
(3)试问:是否存在一个定圆,与以动点
为圆心,以
为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.
已知数列满足
(
).
(1)求的值;
(2)求(用含
的式子表示);
(3)(理)记数列的前
项和为
,求
(用含
的式子表示).
某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域
内,乙中转站建在区域
内.分界线
固定,且
=
百米,边界线
始终过点
,边界线
满足
.
设(
)百米,
百米.
(1)试将表示成
的函数,并求出函数
的解析式;
(2)当取何值时?整个中转站的占地面积
最小,并求出其面积的最小值.
已知复数.
(1)求的最小值;
(2)设,记
表示复数z的虚部).将函数
的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得的图像向右平移
个单位长度,得到函数
的图像.试求函数
的解析式.