已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.
(图①)
(图②)
在等差数列和等比数列
中,a1=2, 2b1=2, b6=32,
的前20项和S20=230.
(Ⅰ)求和
;
(Ⅱ)现分别从和
的前4中各随机抽取一项,写出相应的基本事件,并求所取两项中,满足an>bn的概率.
已知函数为偶函数,周期为2
.
(Ⅰ)求的解析式;
(Ⅱ)若的值.
设函数f(x)=.
(Ⅰ)当a=-5时,求函数f(x)的定义域;
(II)若函数f(x)的定义域为R,试求a的取值范围.
已知曲线的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)把的参数方程化为极坐标方程;
(Ⅱ)求与
交点的极坐标(
).
如图,为△
外接圆的切线,
的延长线交直线
于点
,
分别为弦
与弦
上的点,且
,
四点共圆.
(Ⅰ)证明:是△
外接圆的直径;
(Ⅱ)若,求过
四点的圆的面积与△
外接圆面积的比值.