如图,已知抛物线C1:x2+by=b2经过椭圆C2:+
=1(a>b>0)的两个焦点.
(1)求椭圆C2的离心率;
(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.
直线l的方程为(a+1)x+y+2-a=0(aR)。
(1)若l在两坐标轴上的截距相等,求a的值;
(2)若l不经过第二象限,求实数a的取值范围。
如图,四棱锥P—ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上。
(1)求证:平面AEC⊥PDB;
(2)当PD=AB且E为PB的中点时,求AE与平面PDB所成角的大小。
已知△ABC中,A(1,1),B(m,),C(4,2),1<m<4。
求m为何值时,△ABC的面积S最大。
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=,b=4,且BC边上的高h=
。
(1)求角C;
(2)求边a。
选修4—5:不等式选讲
已知,若不等式
恒成立,求实数
的取值范围.