已知椭圆C1:+
=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.
(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.
已知函数,
.
(1)若函数在其定义域上为增函数,求
的取值范围;
(2)当时,函数
在区间
上存在极值,求
的最大值.
(参考数值:自然对数的底数≈
).
已知等差数列的前
项和为
,且
、
成等比数列.
(1)求、
的值;
(2)若数列满足
,求数列
的前
项和
.
如图,在五面体中,四边形
是边长为
的正方形,
平面
,
,
,
,
,
是
的中点.
(1)求证:平面
;
(2)求证:平面
;
(3)求五面体的体积.
某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
组号 |
分组 |
频数 |
频率 |
第一组 |
![]() |
![]() |
![]() |
第二组 |
![]() |
![]() |
![]() |
第三组 |
![]() |
![]() |
![]() |
第四组 |
![]() |
![]() |
![]() |
第五组 |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
(1)求、
、
的值;
(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这
名学生中随机抽取
名学生与张老师面谈,求第三组中至少有
名学生与张老师面谈的概率
已知函数,
.
(1)求函数的最小正周期和值域;
(2)若,且
,求
的值.