已知a∈R,设p:函数f(x)=x2+(a-1)x是区间(1,+∞)上的增函数,q:方程x2-ay2=1表示双曲线.
(1)若p为真命题,求实数a的取值范围;
(2)若“p且q”为真命题,求实数a的取值范围.
(满分9分)盒子中有大小形状相同的4只红球、2只黑球,每个球被摸到的机会均等,求下列事件的概率:
(1)A=“任取一球,得到红球”;
(2)B=“任取两球,得到同色球”;
(3)C=“任取三球,至多含一黑球”。
(满分10分)用自然语言设计一种计算的值的算法,并画出相应的程序框图。
(满分9分)如图,已知梯形中,
,
。求梯形的高.
(本题满分14分) 设函数.
(Ⅰ)当时,讨论函数
的单调性;
(Ⅱ)若函数仅在x=0处有极值,试求a的取值范围;
(Ⅲ)若对于任何上恒成立,求b的取值范围.
(本题满分14分) 口袋中有个白球和3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若
,求:
(1)n的值;
(2)X的概率分布与数学期望.