甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有多少种?
已知数列的前
项和为
,且满足
.
(1)求证:数列是等比数列,并求数列
的通项公式;
(2)求证:.
已知单调递增的等比数列满足:
,且
是
,
的等差中项.
(1)求数列的通项公式;
(2)若,
,求
成立的正整数
的最小值.
已知函数,直线
,
是
图象的任意两条对称轴,且
的最小值为
.
(1)求的表达式;
(2)将函数的图象向右平移
个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐
标不变,得到函数的图象,若关于
的方程
,在区间
上有且只有一个实数解,求实数
的取值范围.
在中,角
的对边分别是
,若
.
(1)求角的大小;
(2)若,
的面积为
,求
的值.
已知圆的圆心为
,
,半径为
,圆
与离心率
的椭圆
的其中一个公共点为
,
,
分别是椭圆的左、右焦点.
(1)求圆的标准方程;
(2)若点的坐标为
,试探究直线
与圆
能否相切,若能,求出椭圆
和直线
的方程;若不能,请说明理由.