已知下列三个方程:至少有一个方程有实数根.求实数
的取值范围.
(本小题满分12分)
设数列的前
项和为
,点
在直线
上,(
为常数,
,
).
(1)求;
(2)若数列的公比
,数列
满足
,
,
,求证:
为等差
数列,并求
;
(3)设数列满足
,
为数列
的前
项和,且存在实数
满足
,求
的最大值.
(本小题满分10分)将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:
(1)求取出3个小球中红球个数的分布
列和数学期望;
(2)求取出3个小球中红球个数多于白球个数的概率.
(本小题满分12分)
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
).
(1)求MN的长;
(2)当a为何值时,MN的长最小;
(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.
(本小题满分14分) 已知数列的前n项和Sn=9-6n.
(1)求数列的通项公式.
(2)设,求数列
的前n项和.
(本小题满分12分)
过点P(1,4)作直线L,直线L与x,y的正半轴分别交于A,B两点,O为原点,
①△ABO的面积为S,求S的最小值并求此时直线l的方程;
②当|OA|+|OB|最小时,求此时直线L的方程