在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.(1)求点P的轨迹方程;(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为r.(ⅰ)求圆M的方程;(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.
(本小题满分13分)设f (x) = (1)求f(x)的最大值及最小正周期; (9分) (2)若锐角满足,求tan的值。(4分)
设正数a,b满足, 则()
已知二次函数(为参数,)求证此抛物线顶点的轨迹是双曲线.
(2) 已知、都是正数,且,求证:.
(1) 设均为正数,且,求证
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号