游客
题文

(本小题满分13分)设f (x) =
(1)求f(x)的最大值及最小正周期; (9分)
(2)若锐角满足,求tan的值。(4分)

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

若函数上为增函数(为常数),则称为区间上的“一阶比增函数”,的一阶比增区间.
(1) 若上的“一阶比增函数”,求实数的取值范围;
(2) 若 (为常数),且有唯一的零点,求的“一阶比增区间”;
(3)若上的“一阶比增函数”,求证:

如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点,的周长为8,且面积最大时,为正三角形.

(1)求椭圆的方程;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,证明:点在以为直径的圆上.

已知数列(常数),其前项和为
(1)求数列的首项,并判断是否为等差数列,若是求其通项公式,不是,说明理由;
(2)令的前n项和,求证:

一个几何体是由圆柱和三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中

(1)求证:
(2)求三棱锥的体积.

为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图3所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.

(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
(2)求调查中随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号