正四面体ABCD的体积为V,P是正四面体ABCD的内部的一个点.
(1)设“VPABC≥V”的事件为X,求概率P(X);
(2)设“VPABC≥V”且“VPBCD≥
V”的事件为Y,求概率P(Y).
已知椭圆C:的离心率等于
,点P
在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为
,过点
的动直线
与椭圆
相交于
两点,是否存在定直线
:
,使得
与
的交点
总在直线
上?若存在,求出一个满足条件的
值;若不存在,说明理由.
如图已知:菱形所在平面与直角梯形
所在平面互相垂直,
,
点
分别是线段
的中点.
(1)求证:平面平面
;
(2)点在直线
上,且
//平面
,求平面
与平面
所成角的余弦值。
右表是一个由正数组成的数表,数表中各行依次成等差数列,各列依次成等比数列,且公比都相等,已知
(1)求数列的通项公式;
(2)设求数列
的前
项和
。
已知向量,
(1)当时,求函数
的值域:
(2)锐角中,
分别为角
的对边,若
,求边
.
南昌市为增强市民的交通安全意识,面向全市征召“小红帽”志愿者在部分交通路口协助交警维持交通,把符合条件的1000名志愿者按年龄分组:第1组、第2组
、第3组
、第4组
、第5组
,得到的频率分布直方图如图所示:
(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者在五一节这天到广场协助交警维持交通,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,南昌市决定在这12名志愿者中随机抽取3名志愿者到学校宣讲交通安全知识,若表示抽出的3名志愿者中第3组的人数,求
的分布列和数学期望.